

Training Brochure

Module 1: Field Instrumentation for the Process Industry

Pre requisite

None

Training Objectives

- Understanding of measurement principles
- Understanding of development of instrument specification
- Understanding criteria for selecting the right instrument

Training Agenda:

- I. Introduction to Control Loop Stability
 - Mission of a Process Plant
 - Contribution of Field instrumentation
 - P&ID ANSI ISA S5.1
 - Main process variables: Pressure, Level, Temperature and Flow
- II. Specification and Selection of Field Instrument
 - General Criteria
 - Process conditions: service and design conditions
 - Industrial environment: IP, ATEX, EMC, PED

- Metrological Performance
 - Vocabulary and Definitions
 - Errors and type of Errors
 - Calibration curve characteristics
 - Response time
- Others: MTBF, MTTR, TOC
- Conclusion
- III. Introduction to Sensor Types
 - Capacitive
 - Resistive
 - Piezo
 - Magnetic
 - Others

Length of course:

2 days

Module 1: Field Instrumentation for the Process Industry

Training Agenda:

- IV. Pressure Instrumentation
 - Manometer (Torricelli, Bourdon)
 - Membrane
 - Differential Pressure
 - Absolute Pressure
 - Hook up principles
 - Separators and Capillaries
 - Calibration procedure
- V. Level Instrumentation
 - Local instrument: level glass
 - DP
 - Float
 - Displacement tube
 - Capacitive
 - Ultrasonic
 - Radar
 - Gamma Ray
 - Load Cells
 - Level switch
 - Calibration procedure

VI. Temperature Instrumentation

- Thermometers
- PT100
- Thermocouple
- Thermowells
- Sources of errors
- Transmitters
- Calibration procedure

VII. Flow Instrumentation

- DP Cell
- Magnetic
- Vortex
- Turbine
- Ultrasonic
- Variable area
- Mass Flow
- Selection Guide
- Calibration Procedure

Length of course: 2 days

Module 2: Control Valves

Pre requisite

Field instrumentation module or good understanding of P&ID

Training Objectives

- Understanding of the role of the control valve
- Understanding the limitation of control valves
- Understanding specification and selection procedure

Training Agenda:

- I. Defining the problem: Why do we need a control valve?
- II. Type of valves
- III. Actuators
- IV. Defining and understanding CV
- V. Valve Characteristics
- VI. Noise, Cavitation and Choke Flow
- VII. Selection Procedure

Length of course: 1 day

Module 3: Fundamentals of Process Control

Pre requisite

Good understanding of P&ID

Training Objectives

- Understanding of process dynamics
- Understanding regulatory control techniques
- Introduction to multivariable control

Training Agenda:

- I. Introduction to Control Loop Stability
 - Single capacitance process
 - Gain and time constant
 - Dead time process
 - Multi capacitance process
 - Transfer Function
 - Basic components s of a control loop
- II. Introduction to Feedback P&ID Controller
- III. Block Diagrams Approach
- IV. Experimental Determination of Process Dynamics
- V. Control Loop Stability and Control Performance

- VI. Basic Control Techniques
 - ratio control
 - split range control
 - multiple split range control
 - cascade control
 - feed forward control
 - selective and override control
- VII. Examples of Basic Control
- VIII. Introduction to Advanced (Multivariable) Control
 - relative gain matrix
 - decoupling of interacting loops
- IX. Application of Advanced Control to Distillation Columns

Length of course: 2 days

Module 4: PID Tuning

Pre requisite

Fundamentals of Process Control Module or good understanding P&ID and process dynamics

Training Objectives

- Understanding of feedback control and role of P, I and D
- Understanding of process behaviour
- Understanding tuning principles and techniques

Training Agenda:

- I. Introduction to feedback PID control
- II. Role of P, I and D
- III. Process Behaviour: Steady State or Integrative
- IV. Identification of the Process Response
- V. Tuning Techniques, Tuning Parameters and Control
- VI. Loop Performance
- VII. Application to Flow, Pressure and Level control
- VIII. Application to Temperature control
- IX. Improvements of Controllability
- X. re-ranging field instrumentation
- XI. linearization of process
- XII. cascade control and tuning of cascade loops anti-reset windup

Length of course: 1 day

Module 5: Advanced Regulatory Control Techniques

Pre requisite

Modules 3 and 4

Training Objectives

Development of Advanced Control Structures on the Client Process

Training Agenda:

To be developed jointly by CPC and Client on basis of case study

Length of course: 2 or 3 days

Module 6: Antisurge Control

Pre requisite

None

Training Objectives

- Understanding centrifugal compressors performance curves
- Understanding the surge phenomena and how it is controlled
- Understanding how the Antisurge Controller Operates
- Understanding the Antisurge Control Valve
- Understanding centrifugal compressor integration for process control.

Training Agenda:

- I. Introduction to Compressors
- II. Centrifugal compressors performance curves
- III. The Surge Phenomena
- IV. The Antisurge Control Map
- V. How to Control de Surge : The Anti-surge Controller
- VI. The Surge Detector
- VII. The Antisurge Control Valve
- VIII. Compressor integration in Process control
- IX. Safety interlocks and start-up/stop sequence
- X. Practical Case
- XI. Tips to Avoid Production Losses due to Issues Around ASC

Length of course: 2 or 3 days

CPC ENGINEERING

C/Zagreb, parcela 1.8-1.9.
Polígono Industrial Cabezo Beaza.
30353 Cartagena. Murcia. Spain

Tel./Fax: +34 968 197572

contact@cpcengineering.com

www.cpcengineering.com

